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Abstract

The recognition of activities and their localization in
videos captured with cameras mounted on a person con-
stitutes an area of importance since it has multiple appli-
cations: health care, non-invasive monitoring, vision in
robots, among others. The recognition of actions captured
by these devices requires recognition of objects and their
locations. In general, this problem is dealt with using pow-
erful equipment such as clusters or several GPU units. The
objective of this work is to propose additions to Lu’s algo-
rithm in order to obtain the comparable results with smaller
resources. To this end, we have adapted an Action Recog-
nition model in egocentric videos based on Attention Mech-
anisms combined with Optical Flow. This is an architec-
ture model that uses 2 sub-models in parallel: one based on
Optical Flow and the other based on the video itself (RGB
images), to which the following improvements were intro-
duced: addition of mixed precision in the training cycle, use
of Ranger Optimizer instead of vanilla SGD in the attention
mechanism, and the use several activation functions (Swish
[10], GELU [3], LeakyReLU and Mish) . For the tests, the
EGTEA Gaze+ dataset was used, which consists of videos
of first-person actions from daily life and the experimen-
tation carried out together with the results achieved. This
leaves open the possibility of testing more complex datasets.

1. Introduction
The increasing use of wearable devices such as Go-pro,

HoloLens, contributes to the existence of new datasets that
are added to those provided by robotic vision and aug-
mented reality. These videos capture the vision data from
the point of view of a human being where gaze changes are
made with non-controlled speed. Understanding the scene
in these videos and recognizing the action that takes place
in it using third-person videos is different from doing the
same thing using cameras that observe the scenes from an-

other point of view. First person point of view allows ac-
cess to the activities performed by a user carrying a wear-
able device. In recent years, this type of capture has spread
trying to understand the environment and to predict activi-
ties by analyzing fine motor skills, such as hand-object ma-
nipulation or eye-hand coordination [1]. Thus, attention is
focused on the space-time location where an action takes
place, through gaze tracking and hand-object location al-
gorithms. Given the increase in the number of egocentric
videos every day, more challenges arise, such as activity
recognition/classification, video summarisation and object
detection [9].

Figure 1. Examples of egocentric actions (subsampled frames)
from the Extended GTEA Gaze + dataset: (a) ‘cut bell pepper’
action, (b) ‘wash pan’ action and (c) ‘move bowl’ action [9].

This paper deals with two main aspects of scene under-
standing: gaze localization and hand/object detection.

With regard to gaze localization we focus on the work
done by Lu et al. [6] that uses a model with an architec-
ture based on 2 sub-models (also called flows) in parallel,
one of them to recognize movement (using Optical Flow)
and the other to recognize the objects in the image. The
authors have introduced a spatio-temporal attention mecha-
nism called STAM (Spatio-Temporal Attention Module) in
each of these flows, and a training process that uses gaze
supervision (that is, guided by the gaze of the camera).



This turns out in a better recognition performance since the
model concentrates more on the object of interest, leaving
aside the background noise. In order to introduce ourselves
to the challenge of obtaining recognition rates close to those
of Lu [6] we performed several experiments in which we
significantly reduced training time and the number of itera-
tions. Taking as reference the results obtained for RGB and
Optical Flow, this results open a possibility to advance in
this methodology despite of the limited resources available.
To improve training time, we used Mixed Precision, which
allows training with a batch size larger than the one origi-
nally used in [6], thus accelerating convergence, with a very
small loss in precision. On the other hand, for precision, we
tried different variants of the activation functions, and also
with changes in the number of layers. In addition to this, we
tested different optimizers that are more complex than the
one used in the original implementation (vanilla SGD), with
the aim of improving both convergence time and precision
in the evaluation stage.

2. Methodology
The methodology proposed in this section aims to im-

prove both performance in training time and the accuracy
of the model by [6]. We used Mixed Precision for perfor-
mance improvement, making it possible to train with larger
batch sizes than the one originally used in [6]. In this way
it is possible to speed up the convergence with a small loss
in precision. On the other hand, in terms of precision, we
show different variants of the activation functions, and also
changes in the number of layers of the attention mechanism.
We also present different optimizers that are more complex
than the ones in the original implementation (vanilla SGD),
with the aim of improving both the convergence time and
the accuracy in the evaluation stage.

2.1. Mixed Precision

This technique [7, 8] uses both 32-bit and 16-bit float
data during training, with the aim of speeding up training
while consuming less GPU memory, and experimentally, no
losses in precision are usually observed.

In this algorithm the first step consists of casting the
weights of the network from FP32 to FP16, and doing the
forward and backward pass using FP16. However, due to
this, the gradient can end up being very small, so when up-
dating the weights themselves, this is done in FP32, previ-
ously scaling the error (loss) by a factor.

2.2. Optimizers

The default optimizer (SGD) is replaced with a more ad-
vanced one called Ranger, which is a combination of the
LookAhead method [11] and the Rectified Adam (RAdam)
method [5]. RAdam is a variant of the Adam optimizer,
which adds a dynamic adjustment of the learning rates and

in this way it reduces the variance of the training weights,
which improves the convergence of the model towards a
better local minimum than would be achieved with the stan-
dard version of Adam.

LookAhead is a method inspired by recent advances in
the understanding of error surfaces, and consists of main-
taining two sets of weights and interpolating between them,
allowing one of these sets to update faster, using it for explo-
ration, while using the other set of slower updating weights
for long-term stability. The result of this is a reduction in
variance and less sensitivity to a suboptimal choice of hy-
perparameters during training, as well as an acceleration in
convergence.

2.3. Activation Functions

Another of our proposed enhancements include chang-
ing the default activation functions (ReLUs) with differ-
ent types and more complex activation forms. The acti-
vation functions we experimented with were: Swish [10],
GELU [3], LeakyReLU and Mish.

3. Experiments and Results
The Georgia Tech Self-Centered Activities (GTEA)

dataset contains seven types of daily activities, such as mak-
ing sandwiches, preparing tea or coffee. Each activity is
carried out by four different people [2, 4], for a total of 28
videos. For each video, there are about 20 instances of de-
tailed actions, like taking a bread or pouring ketchup. These
videos have a duration of approximately 1 minute.

The original paper from Lu [6] trains the model in 64000
iterations. This would imply a very long training time with
our current hardware. With our improvement, we retrained
and detected that 600 iterations were enough and its perfor-
mance was evaluated again with that number. In this case
and in all subsequent experiments, the models are trained
with mixed precision, since this allows a considerable ac-
celeration of the training time required to reach an accept-
able solution. In all cases, the original learning rate reduc-
tion strategy, MultiStepLR, which reduced the learning rate
only in iterations 300 and 1000, was replaced by ReduceL-
ROnPlateau, which reduces it by a factor of 0.5 each time
the model does not improve its performance in the valida-
tion set for 5 iterations in a row.

The results with the test set from EGTEA dataset are
shown in Table 1 for RGB input and Table 2 for Optical
Flow. Second row shows our experiments with the same
methodology as in [6] but with 600 training iterations. On
row three, we have changed the SGD optimizer used by
Lu for the Ranger optimizer. On the next experiment we
have the expanded Attention Mechanism (with Ranger Op-
timizer). Finally, when trying different activation functions,
we report the best results which were achieved with the
Leaky ReLU.



Accuracy Mean class Acc.

Lu [6] 0.6356 0.5634
Lu (600 iterations) 0.5479 0.4386
Ranger Optimizer 0.6102 0.5456
Expanded Att. Mechanism 0.5989 0.5323
Leaky ReLU Act. Fc. 0.6122 0.5478

Table 1. Accuracy and Mean Class Accuracy on RGB test set from
EGTEA dataset. From row 2 to the bottom, 600 iterations were
performed on all experiments.

Accuracy Mean class Acc.

Lu [6] 0.6009 0.5099
Lu (600 iterations) 0.4881 0.3461
Ranger Optimizer 0.5588 0.4544
Expanded Att. Mechanism 0.5618 0.4617
Leaky ReLU Act. Fc. 0.5657 0.4592

Table 2. Accuracy and Mean Class Accuracy on Optical Flow test
set from EGTEA dataset. From row 2 to the bottom, 600 iterations
were performed on all experiments.

4. Conclusions and future work

In this work we proposed additions to Lu’s algorithm
in order to obtain the comparable results with smaller re-
sources. This approach uses Lu’s double flow methodol-
ogy based on the attention mechanism; each flow was stud-
ied separately aiming at obtaining similar results with much
less computational complexity. As it can be seen in both
tables of this paper, the accuracies obtained for each of the
proposed improvements are comparable to the ones corre-
sponding to the original Lu’s [6] paper.
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